\(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx\) [204]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [C] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 224 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 (31 A+35 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 (43 A+35 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \]

[Out]

(A+C)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2/7*A*s
in(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*cos(d*x+c))^(1/2)-2/35*A*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2
)+2/105*(31*A+35*C)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2)-2/105*(43*A+35*C)*sin(d*x+c)/d/cos(d*
x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {3123, 3063, 12, 2861, 211} \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 (31 A+35 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}-\frac {2 (43 A+35 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}-\frac {2 A \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}}+\frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(9/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(Sqrt[2]*(A + C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a
]*d) + (2*A*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)*Sqrt[a + a*Cos[c + d*x]]) - (2*A*Sin[c + d*x])/(35*d*Cos[c +
 d*x]^(5/2)*Sqrt[a + a*Cos[c + d*x]]) + (2*(31*A + 35*C)*Sin[c + d*x])/(105*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Co
s[c + d*x]]) - (2*(43*A + 35*C)*Sin[c + d*x])/(105*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 \int \frac {-\frac {a A}{2}+\frac {1}{2} a (6 A+7 C) \cos (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{7 a} \\ & = \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} a^2 (31 A+35 C)-a^2 A \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{35 a^2} \\ & = \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 (31 A+35 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {8 \int \frac {-\frac {1}{8} a^3 (43 A+35 C)+\frac {1}{4} a^3 (31 A+35 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{105 a^3} \\ & = \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 (31 A+35 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 (43 A+35 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+\frac {16 \int \frac {105 a^4 (A+C)}{16 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{105 a^4} \\ & = \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 (31 A+35 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 (43 A+35 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}+(A+C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 (31 A+35 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 (43 A+35 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}-\frac {(2 a (A+C)) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 A \sin (c+d x)}{35 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}+\frac {2 (31 A+35 C) \sin (c+d x)}{105 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}}-\frac {2 (43 A+35 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 9.51 (sec) , antiderivative size = 2510, normalized size of antiderivative = 11.21 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Result too large to show} \]

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(9/2)*Sqrt[a + a*Cos[c + d*x]]),x]

[Out]

(-4*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(7*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7/2
)) + (4*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(35*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)
^(5/2)) + (16*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(105*d*Sqrt[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x
)/2]^2)^(3/2)) + (32*C*Cos[c/2 + (d*x)/2]*Sin[c/2 + (d*x)/2])/(105*d*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[1 - 2*Sin
[c/2 + (d*x)/2]^2]) + (2*(A + C)*Cot[c/2 + (d*x)/2]*Csc[c/2 + (d*x)/2]^8*(363825*Sin[c/2 + (d*x)/2]^2 - 472972
5*Sin[c/2 + (d*x)/2]^4 + 26785605*Sin[c/2 + (d*x)/2]^6 - 86790165*Sin[c/2 + (d*x)/2]^8 + 177677808*Sin[c/2 + (
d*x)/2]^10 - 239283044*Sin[c/2 + (d*x)/2]^12 + 52080*Hypergeometric2F1[2, 11/2, 13/2, Sin[c/2 + (d*x)/2]^2/(-1
 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^12 + 560*HypergeometricPFQ[{2, 2, 2, 2, 11/2}, {1, 1, 1, 13/2},
 Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^12 + 213120160*Sin[c/2 + (d*x)/2]^14 -
 168280*Hypergeometric2F1[2, 11/2, 13/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2
]^14 - 2240*HypergeometricPFQ[{2, 2, 2, 2, 11/2}, {1, 1, 1, 13/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x
)/2]^2)]*Sin[c/2 + (d*x)/2]^14 - 121497024*Sin[c/2 + (d*x)/2]^16 + 212520*Hypergeometric2F1[2, 11/2, 13/2, Sin
[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^16 + 3360*HypergeometricPFQ[{2, 2, 2, 2, 1
1/2}, {1, 1, 1, 13/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^16 + 40125184*Si
n[c/2 + (d*x)/2]^18 - 124320*Hypergeometric2F1[2, 11/2, 13/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^
2)]*Sin[c/2 + (d*x)/2]^18 - 2240*HypergeometricPFQ[{2, 2, 2, 2, 11/2}, {1, 1, 1, 13/2}, Sin[c/2 + (d*x)/2]^2/(
-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^18 - 5840384*Sin[c/2 + (d*x)/2]^20 + 28000*Hypergeometric2F1[
2, 11/2, 13/2, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^20 + 560*HypergeometricP
FQ[{2, 2, 2, 2, 11/2}, {1, 1, 1, 13/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]
^20 + 363825*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 +
 2*Sin[c/2 + (d*x)/2]^2)] - 5336100*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2
+ (d*x)/2]^2*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 34636140*ArcTanh[Sqrt[Sin[c/2 + (d*x)/
2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^4*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]
^2)] - 131060160*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^6*Sqrt[S
in[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 320535600*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c
/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^8*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 530671680*A
rcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^10*Sqrt[Sin[c/2 + (d*x)/2]
^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] + 604296000*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]
]*Sin[c/2 + (d*x)/2]^12*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 468948480*ArcTanh[Sqrt[Sin[
c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^14*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c
/2 + (d*x)/2]^2)] + 237726720*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x
)/2]^16*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 70963200*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/
(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^18*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]
 + 9461760*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]]*Sin[c/2 + (d*x)/2]^20*Sqrt[Sin[c/
2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)] - 1120*Cos[(c + d*x)/2]^6*HypergeometricPFQ[{2, 2, 2, 11/2}, {1,
 1, 13/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^12*(-6 + 5*Sin[c/2 + (d*x)/2
]^2) + 280*Cos[(c + d*x)/2]^4*HypergeometricPFQ[{2, 2, 11/2}, {1, 13/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2
+ (d*x)/2]^2)]*Sin[c/2 + (d*x)/2]^12*(103 - 164*Sin[c/2 + (d*x)/2]^2 + 70*Sin[c/2 + (d*x)/2]^4)))/(40425*d*Sqr
t[a*(1 + Cos[c + d*x])]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(9/2)*(-1 + 2*Sin[c/2 + (d*x)/2]^2))

Maple [A] (verified)

Time = 11.01 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.46

method result size
default \(-\frac {\left (105 A \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right )+105 \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, C \left (\cos ^{4}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+105 A \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+105 C \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+86 A \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+70 C \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )-62 A \sin \left (d x +c \right ) \left (\cos ^{2}\left (d x +c \right )\right )-70 C \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+6 A \sin \left (d x +c \right ) \cos \left (d x +c \right )-30 A \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{105 d a \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}}}\) \(328\)
parts \(-\frac {A \left (105 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{4}\left (d x +c \right )\right )+105 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+43 \sqrt {2}\, \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )-31 \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}-15 \sqrt {2}\, \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{105 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {7}{2}} a}-\frac {C \left (3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+3 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-\sqrt {2}\, \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{3 d \left (1+\cos \left (d x +c \right )\right ) \cos \left (d x +c \right )^{\frac {3}{2}} a}\) \(359\)

[In]

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/105/d*(105*A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))*cos(d*x+c)^4+105*2^(1/
2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*C*cos(d*x+c)^4*arcsin(cot(d*x+c)-csc(d*x+c))+105*A*cos(d*x+c)^3*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+105*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*2^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+86*A*cos(d*x+c)^3*sin(d*x+c)+70*C*cos(d*x+c)^3*sin(d*x+c)-62*A*sin
(d*x+c)*cos(d*x+c)^2-70*C*cos(d*x+c)^2*sin(d*x+c)+6*A*sin(d*x+c)*cos(d*x+c)-30*A*sin(d*x+c))*(a*(1+cos(d*x+c))
)^(1/2)/a/(1+cos(d*x+c))/cos(d*x+c)^(7/2)

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 189, normalized size of antiderivative = 0.84 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=-\frac {2 \, {\left ({\left (43 \, A + 35 \, C\right )} \cos \left (d x + c\right )^{3} - {\left (31 \, A + 35 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, A \cos \left (d x + c\right ) - 15 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \frac {105 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right )^{5} + {\left (A + C\right )} a \cos \left (d x + c\right )^{4}\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a}}\right )}{\sqrt {a}}}{105 \, {\left (a d \cos \left (d x + c\right )^{5} + a d \cos \left (d x + c\right )^{4}\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/105*(2*((43*A + 35*C)*cos(d*x + c)^3 - (31*A + 35*C)*cos(d*x + c)^2 + 3*A*cos(d*x + c) - 15*A)*sqrt(a*cos(d
*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 105*sqrt(2)*((A + C)*a*cos(d*x + c)^5 + (A + C)*a*cos(d*x + c)^
4)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c)/((cos(d*x + c)^2 + cos(d*x + c)
)*sqrt(a)))/sqrt(a))/(a*d*cos(d*x + c)^5 + a*d*cos(d*x + c)^4)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(9/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.00 (sec) , antiderivative size = 2199, normalized size of antiderivative = 9.82 \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/105*((105*(sqrt(2)*cos(2*d*x + 2*c)^4 + sqrt(2)*sin(2*d*x + 2*c)^4 + 4*sqrt(2)*cos(2*d*x + 2*c)^3 + 2*(sqrt(
2)*cos(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(2*d*x + 2*c)^2 + 6*sqrt(2)*cos(2*d*x + 2*c)^
2 + 4*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sqrt(a)*arctan2(((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(
d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x +
 c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*
sin(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + co
s(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sin(d*x + c))/abs(e^(I*d*x
+ I*c) + 1), ((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)
^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) +
1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*sqrt(a)*cos(1/2*arctan2(2*(cos(d*x + c) - 1)*
sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos
(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sqrt(a)*cos(d*x + c) - sqrt(a))/(sqrt(a)*abs(e^(I*d*x + I*c) + 1
))) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*(43*(cos(2*d*x + 2*c)^2*sin(d
*x + c) + sin(2*d*x + 2*c)^2*sin(d*x + c) + 2*cos(2*d*x + 2*c)*sin(d*x + c) + sin(d*x + c))*cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 108*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x
+ c) - 12*(9*cos(d*x + c) - 7)*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - ((43*cos(d*x + c) -
105)*cos(2*d*x + 2*c)^2 + (43*cos(d*x + c) - 105)*sin(2*d*x + 2*c)^2 + 2*(43*cos(d*x + c) - 105)*cos(2*d*x + 2
*c) + 43*cos(d*x + c) - 105)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) - 4*(cos(2*d*x
+ 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(12*(14*sin(2*d*x + 2*c) - 5*sin(d*x + c))*cos(7
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 37*(cos(2*d*x + 2*c)^2*sin(d*x + c) + sin(2*d*x + 2*c)^2
*sin(d*x + c) + 2*cos(2*d*x + 2*c)*sin(d*x + c) + sin(d*x + c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c) + 1)) - 12*(14*cos(2*d*x + 2*c) - 5*cos(d*x + c) + 9)*sin(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
+ 1)) - ((37*cos(d*x + c) - 35)*cos(2*d*x + 2*c)^2 + (37*cos(d*x + c) - 35)*sin(2*d*x + 2*c)^2 + 2*(37*cos(d*x
 + c) - 35)*cos(2*d*x + 2*c) + 37*cos(d*x + c) - 35)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))
*sqrt(a))*A/(a*cos(2*d*x + 2*c)^4 + a*sin(2*d*x + 2*c)^4 + 4*a*cos(2*d*x + 2*c)^3 + 6*a*cos(2*d*x + 2*c)^2 + 2
*(a*cos(2*d*x + 2*c)^2 + 2*a*cos(2*d*x + 2*c) + a)*sin(2*d*x + 2*c)^2 + 4*a*cos(2*d*x + 2*c) + a) + 35*(3*(sqr
t(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*arctan2(((abs(e^(
I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) +
1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*
cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*sin(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*
c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x +
I*c) + 1)^2)) + sin(d*x + c))/abs(e^(I*d*x + I*c) + 1), ((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*
x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c
)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*sq
rt(a)*cos(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^
2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sqrt(a)*cos(d*x + c)
- sqrt(a))/(sqrt(a)*abs(e^(I*d*x + I*c) + 1))) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)^(3/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) - 3)*sin(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 4*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d
*x + 2*c) + 1)^(1/4)*(cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) +
1)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))))*C/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*
cos(2*d*x + 2*c) + 1)*sqrt(a)))/d

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{\sqrt {a \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(9/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(sqrt(a*cos(d*x + c) + a)*cos(d*x + c)^(9/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {9}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{9/2}\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(9/2)*(a + a*cos(c + d*x))^(1/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(9/2)*(a + a*cos(c + d*x))^(1/2)), x)